

AGRICULTURA ESPORÃO

2017

769 ha ÁREA AGRÍCOLA

PORTUGAL

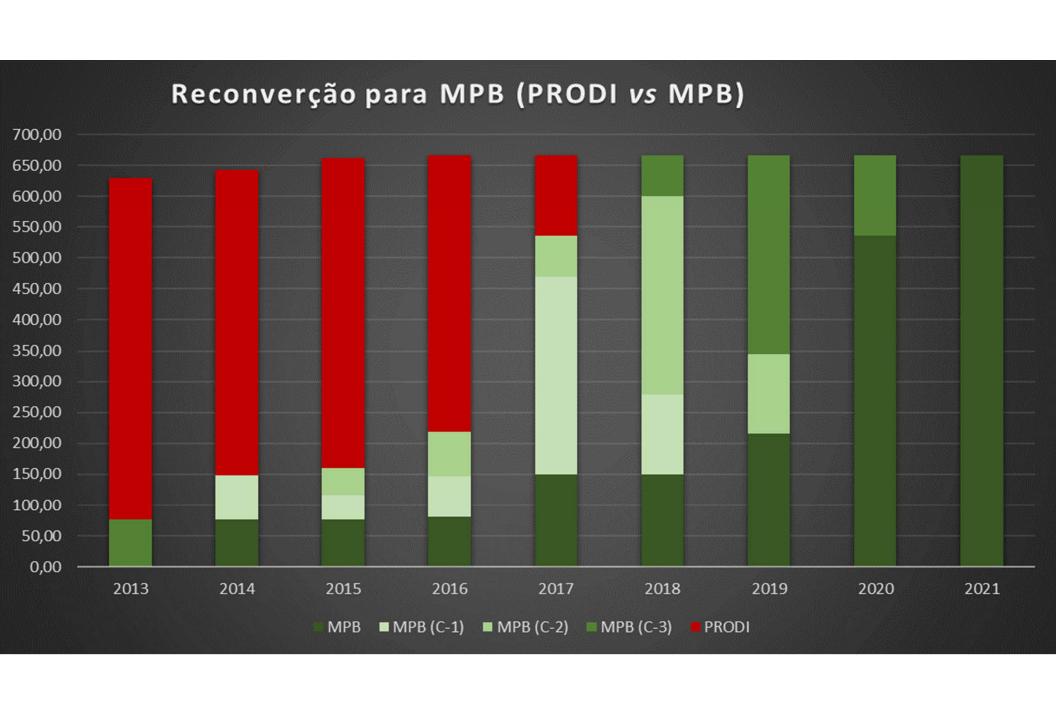
643 ha MODO DE PRODUÇÃO BIOLÓGICO 84%/ 540HA VINHA + 16%/ 103HA OLIVAL

100% HERDADE DO ESPORÃO 100% QUINTA DOS MURÇAS

84%

PORQUÊ OLÓGICO?

PELA QUALIDADE DOS PRODUTOS, PRESERVAÇÃO AMBIENTAL E SAUDE DAS PESSOAS.


180 ha **CERTIFICADOS EM 2017**

\$ + 36 + 8

28%

FAZER OS MELHORES PRODUTOS QUE A NATUREZA PROPORCIONA, DE MODO RESPONSÁVEL E INSPIRADOR.

ESPORÃO

Porquê converter para BIOLÓGICO?

FATORES AMBIENTAIS:

- O impacto das alterações climáticas na nossa atividade;
- A baixa fertilidade dos solos das nossas culturas;
- A erosão;
- A maior incidência de ataques de pragas;
- O impacte causado pela atividade agrícola nos ecossistemas;
- A preocupação com a gestão/qualidade da água utilizada para rega;

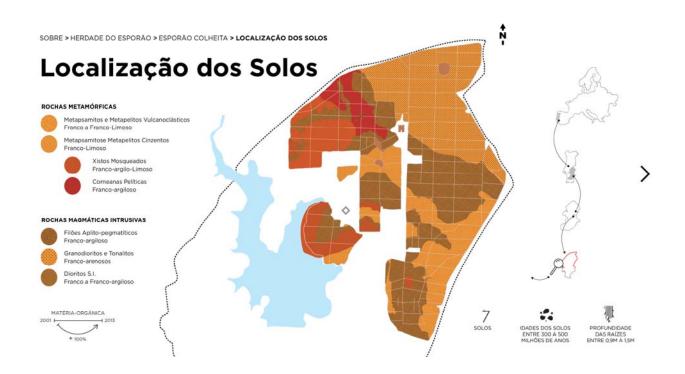
FATORES ESTRATÉGICOS:

- Sustentabilidade do negócio a longo prazo;
- Preocupação com a qualidade do produto final.

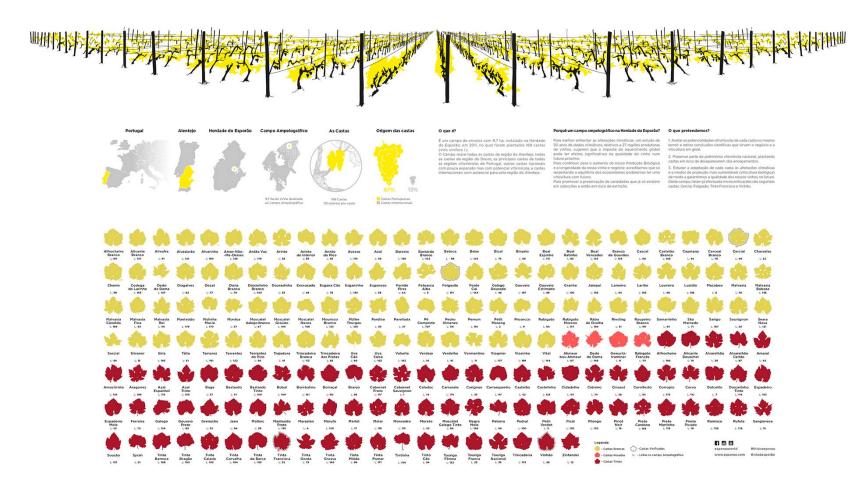
- Reduzir a nossa pegada de carbono;
- Recuperar a fertilidade dos solos;
- Diminuir a erosão,
- Promover um equilíbrio entre as pragas e os auxiliares;
- Garantir a eficiência/qualidade do consumo de água de rega;
- Utilizar compostos orgânicos (recorrendo a subprodutos gerados pela nossa atividade) como alternativa às fertilizações químicas;
- Promover a variabilidade da fauna e da flora dos nossos ecossistemas;
- Produzir uvas/azeitona de qualidade superior e livres de qualquer resíduo.

Medidas desenvolvidas

1. Instalação:


- Levantamento Topográfico (altimetria);
- 2. Cartografia do solo com base na condutividade elétrica;
- 3. Abertura de perfis;
- 4. Escolha de material vegetativo (variedades e porta-enxerto);
- 5. Ripagem;
- 6. Drenagem;
- 7. Arborização das valas de drenagem;
- 2. Controlo de infestantes;
- 3. Controlo de pragas e doenças;

4. Sebes:


- Proteção e fixação de auxiliares;
- 2. Fixação de auxiliares.
- 5. Auxiliares;
- 6. Gestão da água de rega;
- 7. Manutenção do solo;
- 8. Compostagem;
- 9. Instalação de um campo experimental.

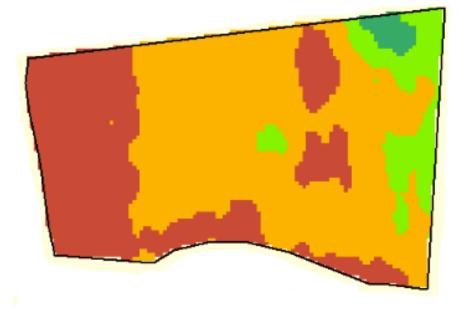
Geologia

CAMPO AMPELOGRÁFICO

Campo Ampelográfico

- Preservar o património vitícola nacional;
- Avaliar a resistência ao stress:
 - Hídrico;
 - Térmico;
 - Fisiológico.
- Avaliar a fenologia e as potencialidades agronómicas/enológicas dentro de um mesmo terroir num contexto de alterações climáticas;
- Avaliar a resistência a pragas e doenças, em Modo de Produção Biológico;

Condutividade elétrica do solo



Sensor de indução eletromagnética (Esporão, 2017).

Condutividade elétrica do solo

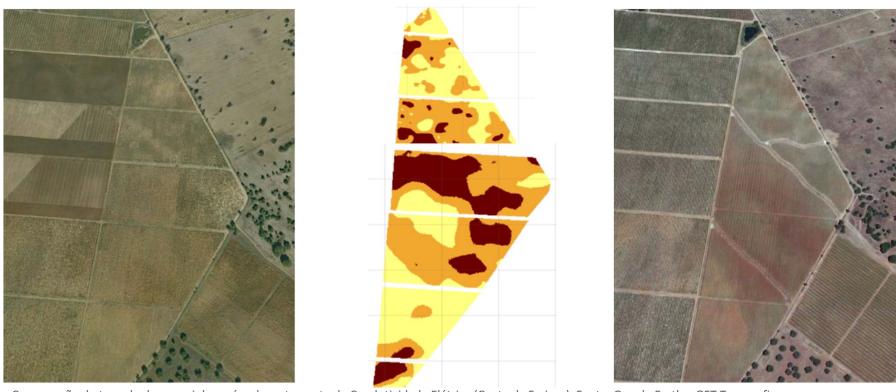
Mapeamento das caraterísticas do solo:

- Teor de argila;
- Teor de humidade;
- Capacidade de retenção de água;
- Densidade porosidade.

Cartografia do solo com base na condutividade elétrica aparente (T033). Fonte: UAVISION.

Abertura de perfis

Análise de um perfil:


- Limitações mecânicas:
 - Presença de rocha mãe;
 - Presença de horizontes compactos.
- Limitações fisiológicas:
 - Acumulação de água.

Perfil do solo do T033 da Herdade do Esporão. Foto: Esporão.

Levantamento Topográfico

Comparação do traçado de uma vinha após o levantamento da Condutividade Elétrica (Canto da Farizoa). Fonte: Google Earth e GET Topografia.

Ripagem

Consiste numa mobilização vertical do terreno (1,0 a 1,2 m), sem que haja inversão das camadas do solo, evitando assim trazer para a superfície horizontes menos férteis.

- Descompactar o solo;
- Criar condições favoráveis ao desenvolvimento das raízes das plantas;

Drenagem

Consiste em colocar sistemas enterrados ou valas à superfície para garantir o escoamento do excesso de água das parcelas.

- Diminuir a erosão;
- Retirar o excesso de água;
- Promover o desenvolvimento das plantas;
- Facilitar a circulação das máquinas;

Vala de drenagem aberta á superfície no T082. Foto: Esporão.

Arborização das valas de drenagem

- Proteger as paredes das valas;
- Evitar a erosão do solo;
- Promover locais de fixação para a fauna auxiliar;
- Criar locais de nidificação para as espécies existentes.

Vala de drenagem arborizada (T061). Foto: Esporão.

Controlo de infestantes

Aplicação de herbicida e mobilização. Foto: Rui Flores.

Aplicação de herbicida na linha de plantação. Foto: Rui Flores.

Controlo químico de infestantes

Controlo químico na linha de plantação (Vinha): Esporão.

Controlo químico na linha de plantação: Esporão.

Controlo mecânico de infestantes

- Evitar a concorrência com a plantas:
 - Nutrientes:
 - Água;
 - Luz.
- Evitar a proliferação de pragas;
- Facilitar as operações culturais:
 - Poda;
 - Poda em verde;
 - Tratamentos fitossanitários.

Controlo mecânico com recurso a intercepas. Foto: Esporão.

Controlo mecânico de infestantes

Corte das infestantes na linha de plantação (Vinha): Esporão.

Corte das infestantes na linha de plantação (Olival): Esporão.

Controlo de infestantes

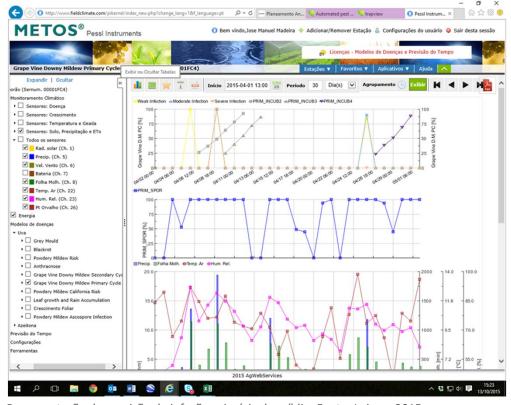
Exploração da vegetação espontânea: Esporão.

Utilização do mulching. Foto: Esporão.

Controlo de infestantes

Controlo mecânico e químico na linha e entrelinha de plantação. Foto: Rui Flores.

Coberto vegetal espontâneo. Foto: Esporão.


Controlo de pragas e doenças

Sistemas de Monitorização:

- Modelos matemáticos de previsão de infeções;
- Monitorização através de armadilhas cromotrópicas e sexuais (NEA);
- Monitorizações visuais;

Modelos de previsão de doenças

Representação de previsão de infeção primária de míldio. Fonte: Irrimax 2015.

Monitorização da Traça dos Cachos

Armadilha sexual delta. Fonte: Trapview.

Controlo da Traça dos Cachos

Difusor utilizado no controlo da Lobesia botrana em sistema de confusão sexual. Foto: Esporão.

Monitorização da Cigarrinha Verde

Armadilha cromotrópica amarela. Fonte: Esporão.

Controlo do Aranhiço Amarelo

Reforço da populações de Ácaros Fitoseídeos (*Amblyseius californicus*) para conrtolo do Aranhiço Amarelo. Foto: Esporão.

Controlo do Aranhiço Amarelo

Aranhiço Amarelo (*Tetranychus urticae*) e Fitoseídeos (*Amblyseius californicus*). Foto: Esporão.

Controlo de pragas

Para além das sebes, que são fundamentais para fixar os predadores das pragas das nossas culturas, foram identificados outros predadores: os morcegos.

Foram identificadas cinco espécies de morcegos que se alimentam no interior das nossas culturas.

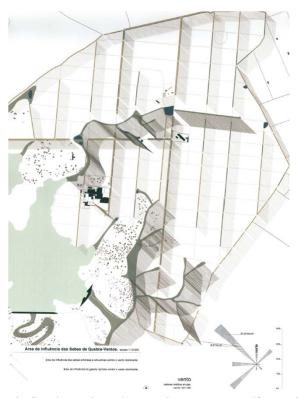
Com o objetivo de fixar e aumentar as populações destes mamíferos, foram colocadas diversas caixas abrigo ao longo de toda a herdade.

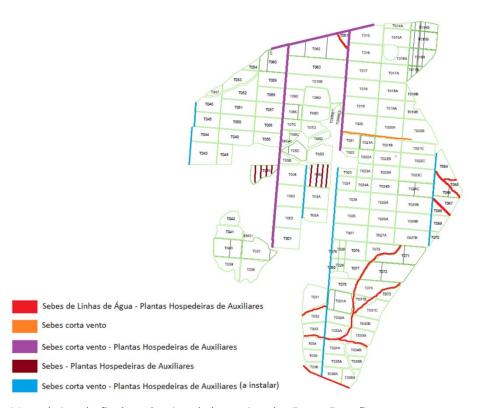
Caixa abrigo para morcegos (T032B). Fotos: Mário Carmo

Reguengos de Monsaraz, 10 de fevereiro de 2020

Controlo de pragas

Introdução de galinhas/gansos


- Controlo da vegetação espontânea;
- Controlo de pragas do solo;
- Polinizadoras e dispersoras das sementeiras dos cobertos vegetais;


Galinhas na Herdade dos Perdigões. Fotos: Esporão.

Sebes de proteção

Mapa de instalação das sebes de acordo com a incidência dos ventos dominantes. Fonte: Global - Arquitetura Paisagista.

Mapa de instalação das sebes instaladas e a instalar. Fonte: Esporão.

Sebes de proteção

- Criar corredores ecológicos;
- Promover a fixação de auxiliares;
- Criar locais de nidificação para as aves;
- Prevenir as culturas contra os ventos dominantes;

Sebes de fixação de auxiliares

Procedimento:

- · Levantamento de pragas;
- · Levantamento da fauna auxiliar;
- Avaliar as espécies hospedeiras dos auxiliares;
- Plantação de espécies hospedeiras de auxiliares no interior das vinhas:
 - Roseira brava;
 - Madressilva;
 - Amora de silvas;
 - Abrunheiro bravo;
 - Folhado;
 - Romãzeira;
 - Loureiro;
 - Sanguinho das sebes;
 - Sabugueiro.

Sebe para fixação de auxiliares no interior de uma vinha nova. Foto: Esporão.

Auxiliares

Ovos de Joaninha-de-sete-pintas: Foto: Esporão.

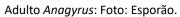
Adultos de Joaninha-de-sete-pintas: Foto: Esporão.

Auxiliares

Larva de Sirfídeo: Foto: Esporão.

Adulto de Sirfídeo: Foto: Esporão.

Auxiliares


Ovo de Crisopídeo: Foto: Esporão.

Adulto de Crisopídeo: Foto: Esporão.

Auxiliares

Adulto de Cantarídeo: e Sirfídeo Foto: Esporão.

Gestão da água de rega

A água é um bem escasso, como tal, todas as medidas desenvolvidas que conduzam a uma redução do seu consumo e preservação da sua qualidade são fundamentais para preservar este recurso.

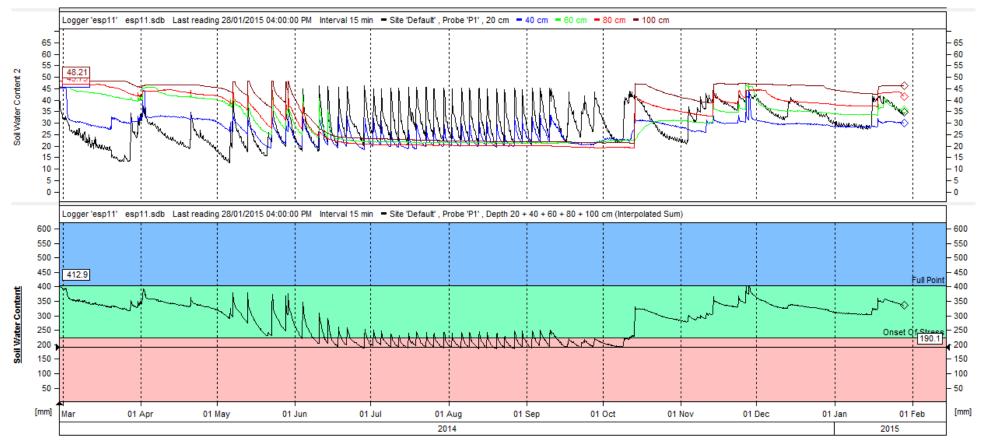
- Supervisão rigorosa do sistema de bombagem;
- Manutenção do sistema de filtração;
- Ajustar pressões;
- Reparar todas as ruturas nas linhas de gotejadores (mais de 2.000 km);
- Instalação de caudalímetros nas estações de bombagem e estações de filtragem;
- Análises periódicas da qualidade da água de rega;

Gestão de rega

A estratégia de rega utilizada nas nossas vinhas prevê um consumo moderado de água, de forma a promover algum *stress* hídrico nas plantas, que resultará numa maior qualidade das uvas produzidas.

EQUIPAMENTOS PARA MONITORIZAÇÃO:

- Estação meteorológica (monitorização do clima);
- Sondas de capacitância. (Enviroscans e diviners para monitorização da humidade do solo);
- Câmara de pressão (monitorização da água na planta);
- Imagens de NDVI (Normalized Difference Vegetative Index) para avaliar a expressão vegetativa da cultura.

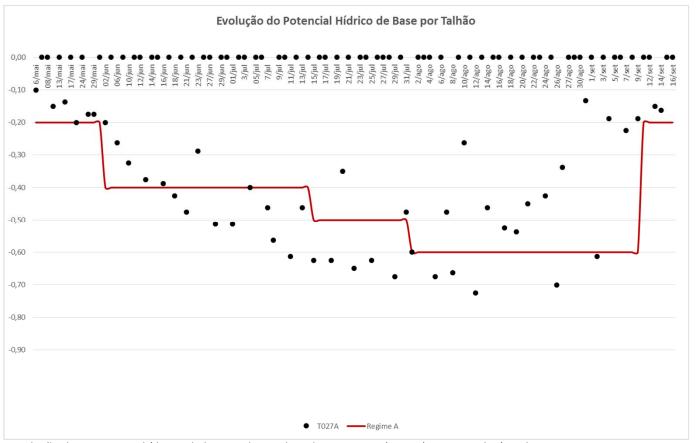


Sondas de capacitância

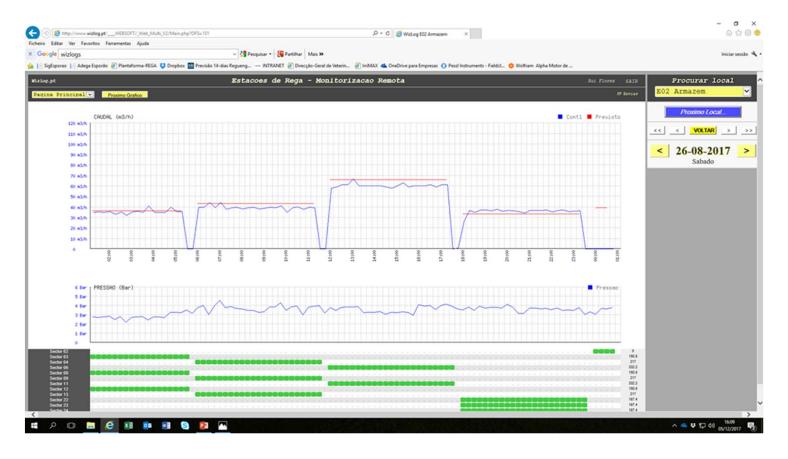
Equipamentos de monitorização da água do solo (diviner e enviroscan).

Software de gestão de rega

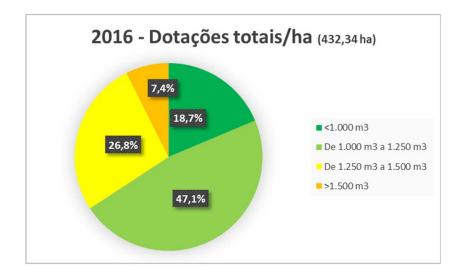
Representação gráfica das movimentações da água no solo ao longo do ciclo vegetativo de um talhão (T027A) com indução de stress. Fonte: Irrimax, 2014.


Câmara de pressão

Câmara de pressão utilizada para monitorizar o potencial hídrico foliar de base. Modelo Punp-Up Pressure Chamber da PMS Instrument Company.


Potenciais hídricos de base

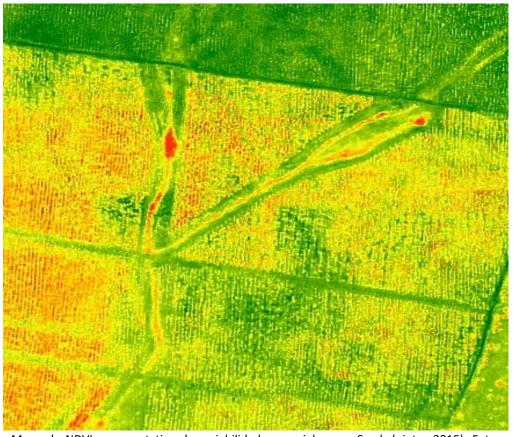
Evolução dos potenciais hídricos de base ao longo do ciclo vegetativo (T027A). Fonte: Relatório de rega 2014.


Uso eficiente da água de rega

Uso eficiente da água de rega

- Uva Vinho = 3.028 m³/ha/ano;
- Conforto hídrico = 2.100 m³/ha/ano;

- Espaços Verdes = 8.275 m³;
- ETAR = 29.829 m^3 ;
- Albufeira = 827.286 m³.



Recolha de imagens de NDVI

Recolha de imagens de NDVI na fase vegetativa pintor, com recurso a imagens Fonte: engesat.com.br captadas por *Drone*. Foto: Esporão.

Rega deficitária

Mapa de NDVI representativo da variabilidade espacial na *cv.* Syrah (pintor 2015). Foto: Esporão.

ESPORÃO

Controlo do deficit hídrico

Aplicação de caulino (como agente refletor da radiação)

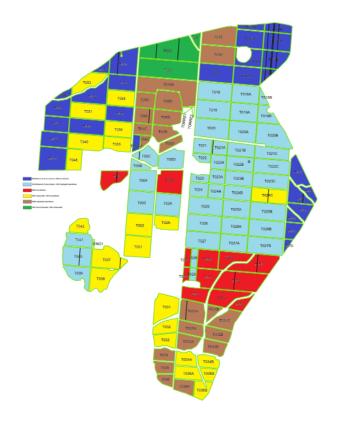
- Reduzir o stress hídrico;
- Reduzir o stress térmico;
- Diminuir o risco de escaldão;
- Aumento da atividade fotossintética;
- Diminuição da aplicação de água para rega;
- Reduzir o impacto das pragas da vinha;

Aspeto de uma planta após a aplicação de caulino. Foto: Esporão.

Controlo do deficit hídrico (Cigarrinha verde)

Aspeto da canópia sem aplicação de caulino. Foto: Esporão.

Aspeto da canópia com aplicação de caulino. Foto: Esporão.


Solos saudáveis, equilibrados e "vivos" são essenciais para conseguirmos atingir a qualidade que ambicionamos.

Desde 2011 que na Herdade do Esporão, não se faz controlo químico da vegetação espontânea na linha de plantação.

FORMAS DE GESTÃO DA ENTRELINHA DE PLANTAÇÃO:

- Sementeiras anuais de leguminosas (sideração);
- Enrelvamento espontâneo;
- Enrelvamentos semeados.

Proposta de manutenção de solo para o ano agrícola de 2017. Foto: Esporão.

ENRELVAMENTO ESPONTÂNEO

Aproveitamento da vegetação espontânea para promover a cobertura do solo (espécies com interesse).

Objetivos:

- Melhorar a estrutura do solo;
- Diminuir a erosão;
- Aumentar a atividade microbiana do solo;
- Facilitar a transitabilidade das máquinas.

Cobertura do solo com vegetação espontânea na entrelinha e controlo mecânico na linha de plantação. Foto: Esporão.

SEMENTEIRAS ANUAIS

De acordo com a fertilidade do solo e a incidência de pragas, semeamos leguminosas, gramíneas ou misturas.

Objetivo:

- Melhorar a estrutura do solo;
- Fornecer azoto à cultura de forma sustentável,

Sementeira de tremoço/aveia e de tremocilha para sideração. Fotos: Esporão.

Sementeira de Quickfix MiX para sideração. Fotos: Esporão.

Sementeira de Flower MiX para sideração. Fotos: Esporão.

ENRELVAMENTO SEMEADO

Sementeira de relvados com leguminosas, gramíneas ou misturas.

Objetivos:

- Melhorar a estrutura do solo;
- · Controlo do vigor da vinha;
- Sequestro de carbono;
- Diminuir a erosão;
- Aumentar a atividade microbiana do solo;
- Facilitar a transitabilidade das máquinas.

Cobertura do solo com sementeira REVIN LEG. Foto: Esporão.

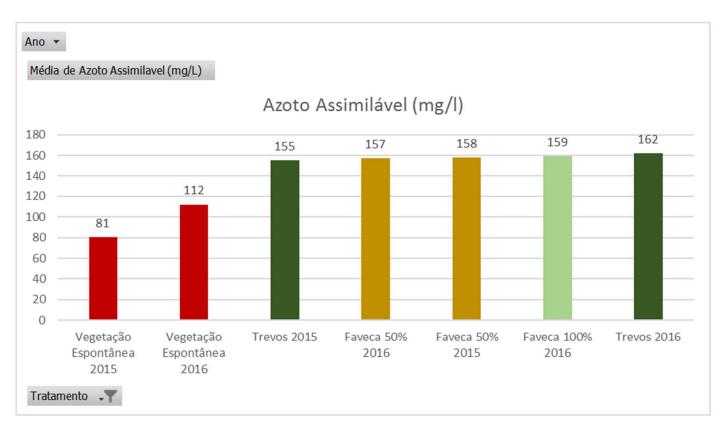
EVOLUÇÃO DO ENRELVAMENTO SEMEADO

Cobertura do solo com sementeira de leguminosas REVIN LEG. Fotos: Esporão.

Pastoreio

Objetivos:

- Controlo da vegetação espontânea;
- Evitar o recurso a controlos mecânicos e químicos;
- Prevenção de incêndios florestais.


Pastoreio no T082. Foto: Esporão.

Pastoreio no T082. Foto: Esporão.

Gestão do solo

Compostagem

É um processo que promove a transformação da matéria orgânica presente nos resíduos orgânicos biodegradáveis, permitindo a sua reciclagem, tratamento, valorização e obtenção de um produto final de qualidade, o **composto** (Ferreira, 2009).

COMPOSIÇÃO:

- Engaços e massas vínicas;
- Folhas de oliveira e bagaço de azeitona;
- Resíduos de poda (paisagismo, horta, jardins);

OBJETIVOS:

- Produzir um composto rico em nutrientes;
- Diminuição da dependência de fertilizantes químicos;

Compostagem

ESPORÃO

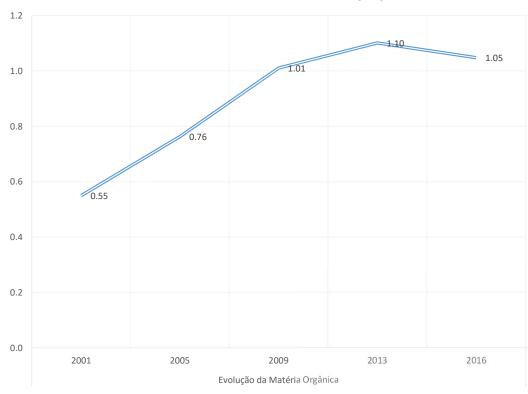
Compostagem (Análise)

cliente - Esporão S.A.

morada - Reguengos de Monsaraz

amostra - 14 (R18)

material - Compostado


valor de pH** -7.7 1.47 dS m⁻¹ condutividade eléctrica (1:5)** -340.9 g kg⁻¹ teor de humidade -708.2 g MO kg⁻¹ teor de matéria orgânica* -410.8 g C kg⁻¹ teor de carbono orgânico* -22.1 g N kg⁻¹ teor de azoto* -3.60 g P kg⁻¹ teor de fósforo* -8.24 g P₂O₅ kg⁻¹ equivalente a 17.1 g K kg⁻¹ 20.5 g K₂O kg⁻¹ teor de potássio* equivalente a 13.7 g Ca kg⁻¹ 19.2 g CaO kg⁻¹ teor de cálcio* equivalente a 4.40 g MgO kg⁻¹ 2.63 g Mg kg⁻¹ teor de magnésio* equivalente a 2.89 g SO₂ kg⁻¹ 1.44 g S kg⁻¹ teor de enxofre* equivalente a

Fertilidade

- Enrelvamentos;
- Incorporação dos resíduos de poda;
- Mobilização mínima;
- Sideração;

MATÉRIA ORGÂNICA (%)

Considerações finais

É com a conjugação de todas estas práticas, e outras a desenvolver futuramente, que pretendemos construir um futuro melhor para as vinhas da Herdade do Esporão, porque acreditamos que com o passar dos anos vão ficar mais resistentes e saudáveis, contribuindo decisivamente para a produção de melhores vinhos.

A natureza inspira-nos, por isso a respeitamos e protegemos, garantindo a continuidade num futuro cada vez mais incerto. Só é possível realizar este compromisso assumindo riscos e inovando.

